Journal of Organometallic Chemistry, 74 (1974) C9—C10
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

ISOCYANIDE COMPLEXES OF MOLYBDENUM NITROSYL

W.G. KITA, J.A. McCLEVERTY*, B. PATEL and J. WILLIAMS

Chemistry Department, The University, Sheffield. S3 7HF (Great Britain)
(Received May 24th, 1974)

Summary

Reaction of π -cyclopentadienylmolybdenum nitrosyl halide with CNR (R = alkyl) gives $[(\pi - C_5 H_5)Mo(NO)X_2(CNR)]$ (X = Br or I), $[Mo(NO)(CNR)_5]X$ (X = I or PF₆) and $[Mo(NO)(CNR)_4I]$; treatment of $[Mo(NO)(CNR)_5]I$ with R'NH₂ gives $[Mo(NO)(CNR)_4\{C(NHR)(NHR)\}]I$ or $[Mo(NO)(CNR)_4(NH_2R')]I$ (R' = alkyl) depending on temperature.

Cleavage of the halogen bridges in $[(\pi - C_5 H_5)Mo(NO)X_2]_2$ by Lewis bases L (phosphines, arsines, pyridines, etc.) affords [1] the monomeric $[(\pi - C_5 H_5)Mo(NO)X_2 L]$. In attempting to prepare related isocyanide complexes we have found that reaction of CNR (R = alkyl) with π -cyclopentadienylmolybdenum nitrosyl halides results in partial dehalogenation and in ready elimination of the cyclopentadienyl ring. The products of these reactions are octahedral isocyanide nitrosyl complexes.

Addition of CNR (R = Me, Et, i-Pr, t-Bu, C_6H_{11}) to $[(\pi-C_5H_5)Mo(NO)I_2]_2$ at room temperature in acetone gave $Mo(NO)(CNR)_5$ I. In refluxing acetone, however, a mixture of $Mo(NO)(CNR)_5$ I and $Mo(NO)(CNR)_4$ I was formed, and these products were also obtained from $[(C_5H_5)_2Mo(NO)I]$ in cold acetone. However, reaction of $[(\pi-C_5H_5)Mo(NO)X_2]_2$ with CNR at 0° in acetone gave the Lewis base adducts $[(\pi-C_5H_5)Mo(NO)X_2(CNR)]$ (X = Br, R = Me, Et, i-Pr, t-Bu, p-ClC₆ H₄ naphthyl; X = I, R = naphthyl).

The carmine-pink pentaisocyanide species were 1/1 electrolytes in nitromethane, and treatment with KPF₆ readily afforded the pink [Mo(NO)(CNR)₅] [PF₆]. The latter could be prepared independently from [Mo(NO)₂ (NCMe)₄] [PF₆]₂ [2] and CNR, in a denitrosylation reaction analogous to the formation of [Cr(NO)(CNR)₅][PF₆] [3]. By heating the iodide salt in acetone, quantitative conversion to the yellow [Mo(NO)(CNR)₄I] occurred, Addition to this non-electrolyte of CNR caused regeneration of the pink salt. The ¹³C NMR spectrum of [Mo(NO)(CNEt)₅][PF₆] in CDCl₃ (room temperature)

^{*}Author to whom correspondence should be addressed.

consisted of two resonances (intensity 4) due to the ethyl groups of the cis-coordinated isocyanides, and two signals (intensity 1) due to the trans-CNEt; isocyanide carbon atom resonances were not resolved.

Treatment of [Mo(NO)(CNR)₅]I with primary amines (R'NH₂) at room temperature gave [Mo(NO)(CNR)₄ {C(NHR')(NHR)}]I (R'= Me, Et, n-Pr) in which the carbene ligand is presumed to be *trans* to the NO group. In refluxing amine, however, only [Mo(NO)(CNR)₄ (NH₂ R')]I was formed. These reactions did not occur with the PF_6 salt.

Acknowledgement

We are grateful to Monsanto Chemicals and to the S.R.C, for support of this work, and to Dr. B.E. Mann for obtaining the ¹³C NMR spectra.

References

¹ R.B. King, Inorg. Chem., 6 (1967) 30; T.A. Jaines and J.A. McCleverty, J. Chem. Soc., A, (1971) 1596; J.A. McCleverty and D. Seddon, J. Chem. Soc. Dalton Trans., (1972) 2526.

² M. Green and S.H. Taylor, J. Chem. Soc. Dalton Trans., (1972) 2629.

³ M.K. Lloyd and J.A. McCleverty, J. Organometal. Chem., 61 (1973) 261.